ArbiText: Arbitrary-Oriented Text Detection in Unconstrained Scene
نویسندگان
چکیده
Arbitrary-oriented text detection in the wild is a very challenging task, due to the aspect ratio, scale, orientation, and illumination variations. In this paper, we propose a novel method, namely Arbitrary-oriented Text (or ArbText for short) detector, for efficient text detection in unconstrained natural scene images. Specifically, we first adopt the circle anchors rather than the rectangular ones to represent bounding boxes, which is more robust to orientation variations. Subsequently, we incorporate a pyramid pooling module into the Single Shot MultiBox Detector framework, in order to simultaneously explore the local and global visual information, which can therefore generate more confidential detection results. Experiments on established scene-text datasets, such as the ICDAR 2015 and MSRA-TD500 datasets, have demonstrated the superior performance of the proposed method, compared to the state-of-the-art approaches.
منابع مشابه
Arbitrary-Oriented Scene Text Detection via Rotation Proposals
This paper introduces a novel rotation-based framework for arbitrary-oriented text detection in natural scene images. We present the Rotation Region Proposal Networks (RRPN), which is designed to generate inclined proposals with text orientation angle information. The angle information is then adapted for bounding box regression to make the proposals more accurately fit into the text region in ...
متن کاملTextBoxes++: A Single-Shot Oriented Scene Text Detector
Scene text detection is an important step of scene text recognition system and also a challenging problem. Different from general object detection, the main challenges of scene text detection lie on arbitrary orientations, small sizes, and significantly variant aspect ratios of text in natural images. In this paper, we present an end-to-end trainable fast scene text detector, named TextBoxes++,...
متن کاملMulti-Oriented Scene Text Detection via Corner Localization and Region Segmentation
Previous deep learning based state-of-the-art scene text detection methods can be roughly classified into two categories. The first category treats scene text as a type of general objects and follows general object detection paradigm to localize scene text by regressing the text box locations, but troubled by the arbitrary-orientation and large aspect ratios of scene text. The second one segmen...
متن کاملRotation-Sensitive Regression for Oriented Scene Text Detection
Text in natural images is of arbitrary orientations, requiring detection in terms of oriented bounding boxes. Normally, a multi-oriented text detector often involves two key tasks: 1) text presence detection, which is a classification problem disregarding text orientation; 2) oriented bounding box regression, which concerns about text orientation. Previous methods rely on shared features for bo...
متن کاملFused Text Segmentation Networks for Multi-oriented Scene Text Detection
In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instanceaware segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during feature extracting as text instance may rely on finer feature expression compared to general objects. It detects and segments the text instance jointly and simultaneous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.11249 شماره
صفحات -
تاریخ انتشار 2017